Section 1.1: Differential equations and mathematical models

New vocabulary:

- differential equation
- Order of a die.
- Solution of a die.
- Ordinary and partial d.e.'s $>$ | variable
- Initial condition, initial value problem

An equation like $\frac{d^{3} P}{d t^{3}}=P^{5}+t$
A solution is a function $P(t)$
The oreles is the highest derivative thatrocuos
This one has order 3
Initial condition is like $P(0)=23$
$D_{1} E_{1}+1 \cdot C=$ an initial value problem.
a)
1.1 question 20: Verify that $y(x)$ satisfies the given dee.
b) Find a value of C so that $y(x)$ satisfies the given initial condition.
)Sketch several typical solutions of the die. and highlight the one that satisfies the given initial condition.

$$
y^{\prime}=x-y ; y(x)=C e^{\wedge}\{-x\}+x-1 ; y(0)=1
$$

die.
a) $y^{\prime}=\sim C e^{-x}+1>x-y=x-C e^{-x}-x+1$

These are equal.
b) $y(0)=C e^{0}+0-1=C-1=1$,
so $C=2$.
1.1 question 20: Verify that $y(x)$ satisfies the given d.e.
Find a value of C so that $y(x)$ satisfies the given initial condition.
c) Sketch several typical solutions of the d.e. and highlight the one that satisfies the given initial condition.

$$
y^{\prime}=x-y ; y(x)=C e^{\wedge}\{-x\}+x-1 ; y(0)=1
$$

Class Activity!!!

If $y(0)=10$, what is C ?
a. $\mathrm{e}^{\wedge}\{10\}$
b. 9
c. 10
d. 11
e. None of the above.

Some equations in the text.
Example 3: Newton's law of cooling where the body temperature is $T(t)$ and the ambient temperature is A .

$$
\frac{d T}{d t}=k(T-A)
$$

We don't need to know Example 4: Torricelli's law.

Example 5: the size of a population $\mathrm{P}(\mathrm{t})$ with constant birth and death rates.

$$
\frac{d P}{d t}=k P
$$

Section 1.1 question 29.
Write a differential equation $d y / d x=f(x, y)$ having a function g as one of its solutions, where g is described by: Every straight line normal to the graph of g passes through the point $(0,1)$.

We find a tangent vector to the graph. The vector $\left(1, \frac{d y}{d x}\right)$ has slope $\frac{d y}{d x}$. Tail paints in the tangent direction.

The normal line passes through $(0,1)$ and $(x, g(x))$ so $(x, g(x)-1)$ points in the normal direction

Equation: $\left(1, y^{\prime}\right) \cdot(x, y-1)=0$ $x+y^{\prime}(y-1)=0$ is the required die

